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APPENDIX 1: Exploring different parameter values 51	  

 In this section we assess how robust our results are to a change in parameter values. 52	  

We did so by exploring other possible values for d! , d! , !  and ! . For changes in d!  and 53	  

d!  our qualitative results hold, but an increase in d!  seems to have a less pronounced effect 54	  

than one in d!  (Fig. S1-1; also see Appendix 3). As !  and!  increase, the effect of individual 55	  

variation decreases (Fig. S1-2). This occurs because the attack rate and the handling time 56	  

become constant, and largely independent of the value of the controlling trait. Small !  or !  57	  

leads to a large dependency of the attack rate and the handling time upon the underlying trait 58	  

value, and hence, to an increased effect of individual trait variation (Fig. S1-3). 59	  

 60	  

Fig S1-1: Plots of interaction strength against increasing individual variation (gray: resource, 61	  

black: consumer). (a) ! = 1, !max = 2, !min= 1, ! =3, ! = 1, d! = 2, d! = 0. (b) same as (a) but 62	  

for d! = 0, d! = 2.  63	  
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 65	  

Figure S1-2: Plots of interaction strength against individual variation measured as ! 2 . 66	  

Parameter values: (a) ! = 1, !max = 2, !min = 1, ! =3, ! = 1, d! = 0, d! = 0. (b) same as (a) but 67	  

for ! =1, ! = 3. (c) same as (a) but for ! =3, ! = 3. 68	  
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 69	  

Figure S1-3: Plots of interaction strength against individual variation measured as ! 2 . 70	  

Parameter values: ! = 1, !max = 2, !min = 1, ! =0.1, ! = 0.1, d! = 0, d! = 0.  71	  
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APPENDIX 2: Mean attack rate and mean handling time 87	  

 In what follows we show how the mean attack rate and the mean handling time change 88	  

with increasing levels of individual variation. While attack rate decreases with individual 89	  

variation whenever phenotypic mismatch is small, handling time increases (Fig. S2-1a). 90	  

When phenotypic mismatch is large, however, attack rate increases at first with variation and 91	  

then decreases, and the opposite is true for handling time (Fig. S2-1b). 92	  

 93	  

 94	  

Figure S2-1: Plots of how mean attack rate (black) and mean handling time (grey) change 95	  

with individual variation under small phenotypic mismatch (a) and larger phenotypic 96	  

mismatch (b). Parameter values: (a) !max = 2, !max = 2, !min = 1, ! = 0.5, ! =1, ! = 1, 97	  

d! = d" = 0 ; (b) same as in (a) but for d! = d" = 2 . 98	  
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APPENDIX 3: Elasticity 99	  

The elasticity is a measure of model sensitivity defined as the absolute value of 100	  

! log( f ) ! log(a) , where f  is the function of interest (interaction strength in this case), and 101	  

a  is the parameter of interest (attack rate or handling time in this case). The larger the 102	  

elasticity, the more sensitive the function is to a change in the parameter.  103	  

The effects of individual variation upon consumer-resource dynamics seem to be 104	  

mainly driven by variation in the attack rate, as its elasticity is generally larger than that of the 105	  

of handling time regardless of phenotypic mismatch or individual variation (Fig. S3-1). 106	  

Although Jensen’s inequality predicts opposite effects of variation in attack rate and handling 107	  

time when considered independently (Fig. 1a, 1b), interaction strengths incorporating 108	  

individual variation in both attack rate and handling time simultaneously seem to mainly be 109	  

affected by variation in attack rate. 110	  

 111	  
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 122	  

Fig S3-1: Plot of the elasticity of the interaction strengths for with respect to the attack rate 123	  

(black) and the handling time (gray). (a) ! = 1, !max = 2, !min = 1, ! =1, ! = 1, d! = 0, d! = 0. 124	  

(b) same as (a) but for d! = 2. (c) same as (a) but for d! = 2. 125	  

 126	  
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APPENDIX 4: asymmetric trait distribution  128	  

 In the main text we assumed the trait that controls the ecological interaction through 129	  

its effect on attack rate and handling time to be normally distributed. However, the 130	  

distribution of some traits is highly asymmetric and skewed (Gouws et al. 2011). In this 131	  

section, we break this assumption by incorporating an asymmetric distribution (log-normal 132	  

distribution, Fig. S4-1). We show that the effect of individual variation is not largely affected 133	  

by the choice of the underlying trait distribution but the range of scenarios at which 134	  

interaction strength decreases with individual variation becomes larger when asymmetry is 135	  

taken into account.  136	  

 Here, we assumed both attack rate and handling time to depend on the value of a log-137	  

normally distributed trait with location parameter x  and scale parameter ! 2 . Then its density 138	  

in the population is: 139	  

                                                 
Lp(x, x ) = 1

x 2!" 2
exp !

log(x)! x( )2

2! 2

"

#
$
$

%

&
'
'
.                  (1) 140	  

Note that as both the location and scale parameter control the shape of the distribution, the 141	  

variance of the distribution, and hence, individual variation, now depends on both parameters. 142	  

For simplicity, we focus on the case where only ! 2  varies. We have numerically integrated 143	  

IR,L (!,")  and IC,L (!,")  to find the interaction strength with varying levels of individual 144	  

variation ! 2  as: 145	  

IR,L (!,") = !R
!(x)

1+!(x)"(x) R
Lp(x, x )

!"

"

# dx                            (2) 146	  

IC,L (!,") = # C
!(x)

1+!(x)"(x) R( )2!"

"

# Lp(x, x ) dx
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

(3) 
	  

147	  

We found that the interaction strength has a qualitatively similar behavior with respect 148	  

to individual variation than in the case with a symmetric distribution. This is, there is a range 149	  
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of scenarios at which the interaction strength decreases monotonically with individual 150	  

variation, and a range of scenarios at which the interaction strength is maximized by 151	  

intermediate values of individual variation (see main text). Indeed, there is an optimal amount 152	  

of individual variation that maximizes interaction strength when trait mismatch is large, if the 153	  

average trait value in the population is smaller than the selective optimum ( d! << 0 or d! << 0154	  

, Fig S4-2a), and this behavior is also quantitatively comparable to the one obtained with a 155	  

symmetric trait distribution. The interaction strength still decreases with individual variation 156	  

whenever trait mismatch is small ( d! ~ 0  and d! ~ 0 , Fig S4-2b), but this is also true for 157	  

cases where the average trait value in the population is larger than the selective optimum (158	  

d! >> 0 or d! >> 0 , Fig S4-2c). Thus, asymmetric trait distributions can increase the range of 159	  

scenarios in which interaction strengths decreases with individual variation. 160	  

 161	  

 162	  

Figure S4-1: Plot of a symmetric distribution (e.g. normal) and an asymmetric distribution 163	  

 (e.g. log-normal). The log-normal distribution used in the supplementary material mainly 164	  

differs from the normal distribution used in the main text in that it the former is more skewed 165	  

than the latter.   166	  
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 167	  

Figure S4-2: Plots of interaction strength against individual variation measured as ! 2 . 168	  

Phenotypic mismatch is large (a) and (c), and small in (b). Parameter values: (a) ! = 1, !max = 169	  

2, !min = 1, ! =1, ! = 1, d! = -2, d! = 0. (b) same as (a) but for d! = 0. (c) same as (a) but for 170	  

d! = 2. 171	  
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APPENDIX 5: asymmetric functional forms for attack rate and handling time 172	  

 In the main text, we assumed the attack rate and handling time to be non-linear, yet 173	  

symmetric functional forms of the underlying controlling quantitative phenotypic trait. 174	  

However, these ecological attributes could be asymmetric, as found in most thermal response 175	  

curves (Vasseur et al. 2014). The asymmetry of these functional forms generally arise from 176	  

important physiological or biomechanical constrains (Vucic-Pestic et al. 2010), which need to 177	  

be taken into account to accurately describe the non-linear relationship between underlying 178	  

phenotypic traits and the ecological attributes they influence. In this section, we break the 179	  

assumption of symmetry for the attack rate and the handling time, by incorporating 180	  

asymmetric functional forms (Fig. S5-1). We found that the asymmetry in attack and handling 181	  

times can have a quantitative effect in the way individual variation affects interaction 182	  

strengths, mostly by reducing the range of possible scenarios in which interaction strength 183	  

decreases monotonically with increasing individual variation.  184	  

 The now asymmetric predator’s attack rate, !asymm (x) , can be assumed to be maximal 185	  

at a given optimal trait value x =!" , and to decrease away from that maximum at a different 186	  

rate depending on the direction. Such a scenario can be modeled by:  187	  

!asymm (x) =!max !!max exp !
log(x)! log("! )( )2

2# 2
"

#
$
$

%

&
'
'

,      (4) 188	  

where !max  is the maximal attack rate (Fig. S5-1a) and the rest of the parameters are as 189	  

described in the main text. Similarly, the predator’s handling time, !asymm (x) , is minimal at 190	  

the given optimal value x =!" , and increases away from that minimum at a different rate 191	  

depending on the direction like:   192	  

!asymm (x) = !max !!min( )exp !
log(x)! log("! )( )

2

2# 2
"

#

$
$

%

&

'
'
,         (5) 193	  



	   12	  

where !max  and !min  are maximal and minimal handling times respectively (Fig. S5-1b) and 194	  

the rest of the parameters are as described in the main text. Because of the asymmetry, it is 195	  

now impossible to derive analytic expressions for the mean (asymmetric) attack rate and 196	  

handling times, so we have numerically integrated IR,asymm (!,")  and IC,asymm (!,")  to find the 197	  

interaction strength with varying individual variation ! 2
 as: 198	  

IR,asymm (!,") = !R
!asymm (x)

1+!asymm (x)"asymm (x) R
p(x, x )

!"

"

# dx                       (6) 199	  

IC,asymm (!,") = # C
!asymm (x)

1+!asymm (x)"asymm (x) R( )
2

!"

"

# p(x, x ) dx
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

(7) 200	  

 Overall, we found that the asymmetry in attack rate and handling time seems to 201	  

preclude a monotonically decreasing relation of interaction strengths with individual 202	  

variation. If phenotypic mismatch is large enough and the average trait value in the population 203	  

is smaller than the selective optimum ( d! << 0 or d! << 0 ), both the symmetric and the 204	  

asymmetric case predict a hump shaped relationship between interaction strengths and 205	  

individual variation. If phenotypic mismatch is small ( d! ~ 0  and d! ~ 0 ), interaction seems 206	  

to only increase with individual variation when asymmetric attack and handling rates are 207	  

considered, rather than showing a monotonic decrease as with symmetric attack rates and 208	  

handling times (Fig. S5-2b). Finally, if the average trait value in the population is larger than 209	  

the selective optimum ( d! >> 0 or d! >> 0 ), both the symmetric and the asymmetric case are 210	  

congruent.  211	  

 212	  

 213	  
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 214	  

Figure S5-1: Plots of attack and handling time against a given quantitative phenotypic trait, 215	  

where !"  and !"  are the optimal trait values for attack rate and handling time respectively. 216	  

Note that the ecological attributes are now asymmetric with respect to the trait of interest in 217	  

contrast to what was assumed in the main text (Fig. 2, main text). 218	  
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 227	  

Figure S5-2: Plots of interaction strength against individual variation measured as ! 2 . 228	  

Phenotypic mismatch is large in (a) and (c), and small in (b). Parameter values: (a) ! = 1, 229	  

!max = 2, !min = 1, ! =1, ! = 1, d! = -3, d! = 0. (b) same as (a) but for d! = 0. (c) same as (a) 230	  

but for d! = 3. 231	  
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APPENDIX 6: Asymmetric trait distributions, and asymmetric attack rate and handling time 232	  

In this section, we incorporate asymmetric trait distributions as well as asymmetric 233	  

attack rate and handling times by means of equations (1), (4) and (5) of the supporting 234	  

information. Because of the asymmetry, it is now impossible to derive analytic expressions 235	  

for the (asymmetric) attack rate and handling time, so we have numerically integrated 236	  

IR,Lasymm (!,")  and IC,Lasymm (!,")  to find the interaction strength with varying individual 237	  

variation ! 2
 as: 238	  

IR,Lasymm (!,") = !R
!asymm (x)

1+!asymm (x)"asymm (x) R
Lp(x, x )

!"

"

# dx                    (8) 239	  

IC,Lasymm (!,") = # C
!asymm (x)

1+!asymm (x)"asymm (x) R( )
2

!"

"

# Lp(x, x ) dx              (9) 240	  

The results for asymmetric distribution and asymmetric attack rate and handling time 241	  

are comparable to those found in Appendix S5. Specifically, whenever phenotypic mismatch 242	  

is large enough and the average trait value in the population is smaller than the selective 243	  

optimum ( d! << 0 or d! << 0 ), the symmetric and the asymmetric cases yield comparable 244	  

predictions (Fig. S6-1a). Conversely, the interaction strength seems to be maximized by 245	  

intermediate levels of individual variation whenever phenotypic mismatch is small ( d! ~ 0  246	  

and d! ~ 0 ), but this differs from what is predicted by the symmetric case (Fig. S6-1b). 247	  

Finally, whenever the average trait value in the population is larger than the selective 248	  

optimum ( d! >> 0 or d! >> 0 , Fig. S6-1c), both symmetric and asymmetric cases are 249	  

congruent. Overall, it seems that asymmetric relationships between the attack rate and the 250	  

handling time with the underlying controlling quantitative trait precludes interaction strengths 251	  

to decrease with individual variation, but the opposite is truth whenever only asymmetric 252	  

distributions are considered. 253	  
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 254	  

Figure S6-1: Plots of interaction strength against individual variation measured as ! 2 . 255	  

Phenotypic mismatch is large in (a) and (c), and small in (b). Parameter values: (a) ! = 1, 256	  

!max = 2, !min = 1, ! =1, ! = 1, d! = -2, d! = 0. (b) same as (a) but for d! = 0. (c) same as (a) 257	  

but for d! = 5. 258	  
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APPENDIX S7: Consumer persistence  259	  

 Large values of individual variation can lead to consumer extinction (Fig S7-1), as 260	  

suggested by eqn 14 and eqn 15 of the main text. 261	  

 262	  

 263	  

 264	  

 265	  

Figure S7-1: Outcome of the consumer-resource interaction as a function of individual 266	  

variation (! 2 ) and phenotypic mismatch between preys and predators ( d 2 ). In the black 267	  

region, consumers go extinct but the resource survives, while in white and grey regions both 268	  

consumers and resources coexist. Parameter values: !max = 2, !max = 2, !min= 1, ! = 0.5, ! =1, 269	  

! = 1, d! = d" , K=1, ! = 0.1. 270	  
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APPENDIX S8: 273	  

Here we show that for those values of ! 2  for which coexistence is ensured, the larger 274	  

! 2
	  is, the more stable the system becomes. To do so, we observe that, if ! 2  is very small, 275	  

then the following equality holds,  276	  

!(x ) R
1+!(x )"(x ) R

=
RC!(x)

1+!(x)"(x) R
p(x, x )

!"

"

# dx ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (10) 277	  

where: 278	  

   !(x ) = !(x)p(x, x )
!"

"

# dx  279	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  = !max "

# 2 +" 2
exp ! d!

2

2 (# 2 +" 2 )
"

#
$

%

&
' ,	   	   	   	  	  	  (11) 280	  

  !(x ) = !(x)p(x, x )
!"

"

# dx  281	  

	  	  	  	  	  	  	  	  	  	  	  	  =!max !
" !max !!min( )

! 2 +" 2
exp !

d#
2

2 (! 2 +" 2 )

"

#
$

%

&
' ,	   	   	  	  	  (12) 282	  

and d! = x !"!  and d! = x !"! , are the distance between the mean trait in the population and 283	  

the adaptive optimum (phenotypic mismatch). 284	  

 Hence, assuming that individual variation is small enough, we can assess local 285	  

stability of the dynamic system by replacing the functional response defined in the main text 286	  

(in eqn 13 of the main text, or right side of eq. 10 in appendix) by the functional response 287	  

evaluated at !(x )  and !(x ) , and by then calculating the Jacobian of the system at its 288	  

equilibrium:  289	  

J
R*,C*

=

!
r d ! !K!"(x )#(x )+ d#(x ) 1+K"(x )#(x )( )"# $%

K !(x )"(x )# # ! d"(x )( )
!
d
!

r d
K"(x )

+! ! d#(x )
&

'
(

)

*
+ 0

&

'

(
(
(
(
((

)

*

+
+
+
+
++

.           (13) 290	  
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The system is stable, if and only if the determinant of J
R*,C*

 is positive but its trace is 291	  

negative. The latter is true whenever:  292	  

d < !
"(x )

 and !(x )< ! + d!(x )
K!(x ) ! + d!(x )( )

. We can now use (11) of the appendix to obtain:  293	  

!max "

# 2 +" 2
exp ! d!

2

2 (" 2 +# 2 )
"

#
$

%

&
'<

$ + d!(x )
K!(x ) ! + d!(x )( )

.     (14) 294	  

If phenotypic mismatch is small ( d!
2 ~ 0 ), we can rearrange the eq. 14 to obtain: 295	  

! 2 >
"max # K$(x ) % ! d$(x )( )

% + d$(x )
!# 2 .      (15) 296	  

Finally, if we further assume that variation in attack rate has a larger effect than that in 297	  

handling time, as observed in appendix 3, we get eq. 3.3 of the main text:  298	  

! 2 >
"max # K$max % ! d$max( )

% + d$max
!# 2 .     (16) 299	  

Eq. 16 implies that for the system to be stable, individual variation needs to be larger than a 300	  

certain amount. This is supported by our simulations (Fig 3, main text), as increasing 301	  

variation forces the system through a Hopf bifurcation, from an attractive limit cycle to an 302	  

attractor node. Although the limit cycle is orbitally stable, the population fluctuations 303	  

underwent by both interacting species makes the system more likely to lose species due to 304	  

demographic or environmental variability. 305	  

 306	  

 307	  

 308	  

 309	  

 310	  

 311	  

 312	  
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