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A) Matching Alleles Model: single-site, two-sites and n-site dynamics. 

The Matching Alleles Model is a simple model in discrete time that assesses species 

coevolution within a given site (Seger 1988, Gavrilets and Hastings 1998). During the last 

decade it has been successfully used to explore species coevolution in space-structured 

populations (e.g. Nuismer et al. 1999, Gomulkiewicz et al. 2000, Gomulkiewicz et al. 2003). 

Both the model and its assumptions are explained in detail in the Methods section. Here we 

will focus on showing analytically its behavior in a single site model, its numerical behavior 

in a two-site case as well as an analytical proof for it in a special case and we will finally 

extend it to a star subgraph with n-sites in which coldspots are at equilibrium. 

 

i) Single-site case: local stability of polymorphic equilibrium 

Let us consider the case in which two species coevolve through reciprocal antagonistic 

interactions in a single site and each species has two alleles, namely: X  and x  for the 

parasite (or predator) and Y  and y  for the host (or prey). Let us define Xt , Yt , xt  and yt  as 

the allele frequencies at time t of alleles X , Y , x  and y  respectively, such that xt =1! Xt  

and yt =1! Yt . Following Seger 1988, the fitness equations associated to this system are: 

WXt =1+! Yt

Wxt =1+! (1! Yt )

WYt =1! ! Xt

Wyt =1! ! (1! Xt )
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where !  is the fitness sensitivity on species interactions. Then, allele frequencies at time t +1 

are defined as: 

Xt+1 =
XtWXt

XtWXt +(1! Xt )Wxt

Yt+1 =
YtWYt

YtWYt +(1! Yt )Wyt
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At equilibrium, ! X = Xt+1 " Xt = 0  and ! Y =Yt+1 " Yt = 0 . Solving ! X = 0 and ! Y = 0  for Xt  

and Yt  gives us the equilibrium allelic frequencies (let us name them X*  and Y * ): 

X* = 0, Y* = 0
X* = 0, Y* =1

X* =
1
2

, Y* =
1
2

X* =1, Y* = 0
X* =1, Y* =1
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It can be seen that there is one single polymorphic equilibrium, X* = 1
2  and Y*= 12 . In all 

other equilibria populations are monomorphic due to the loss of one allele in each species.  

We assessed whether the polymorphic equilibrium is locally stable by studying the 

Jacobian matrix of the system, evaluated at X* = 1
2and Y*= 12 :  

J
X*,Y*=

1
2

=
1
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The eigenvalues of such matrix tell us whether the system returns to equilibrium or goes away 

from it after a small perturbation. Indeed, if the absolute value of the real part of the 

eigenvalues of the Jacobian is smaller than one, the equilibrium is stable. If the absolute value 

of the real part of the eigenvalues of the Jacobian is bigger than one, then the equilibrium is 

unstable. For (4), we get the following eigenvalues: 

! 1 =1+
" (" 2 ! 4)

(" 2 ! 4)
         (5) 

! 2 =1!
" (" 2 ! 4)

(" 2 ! 4)
.         (6) 

In our case, !  is always positive. For ! > 0!!(! ! 2)  there is at least one eigenvalue with 

absolute value larger than one. Therefore, the single-site MAM has a single polymorphic 
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equilibrium that is unstable. If 0 <! < 2 , then (! 2 ! 4) < 0  and the eigenvalues will have an 

imaginary part, implying that a small perturbation will carry allelic frequencies away from 

X*=Y*= 12  in the form of increasing oscillations. If ! > 2 , the eigenvalues are purely real 

and a small perturbation will lead to a monotonic increase (decrease) in allelic frequency until 

a fixation (elimination) point is reached. For 

!  

" = 2, the eigenvalues are not defined and local 

stability analysis is uninformative. 

 

ii) Two-site case: qualitative behavior 

Here we reviewed the results by Nuismer et al. 1999 in the two-site case. Let us 

consider two sites connected by migration of individuals of two coevolving species. One of 

the sites is a coevolutionary hotspot and the other one is a coevolutionary coldspot. Thus, the 

structure of selection imposed by the interaction varies among sites. In the coevolutionary 

hotspot the antagonistic interaction between species leads to reciprocal selection. In the 

coldspot, selection is non-reciprocal and there is a fitness gain for one of the interacting 

species, whereas the interaction has no effect in the fitness of the other species. As found in 

previous studies (Nuismer et al. 1999), the coevolutionary dynamics within the hotspot are 

deeply influenced by gene flow. When there is no gene flow between sites, hotspot allelic 

frequencies oscillate unstably (fig. A-1) but when there is gene flow, hotspot allelic 

frequencies oscillate stably (fig. A-2). That is, gene flow among sites allows polymorphism 

maintenance in hotspots. When there is gene flow, coevolutionary oscillations are dampened, 

leading the population to a stable polymorphic state (fig. A-2) and therefore dynamics differ 

between one-site and two-sites MAMs.   
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Figure A: Coevolutionary dynamics for a two-site Matching Alleles Model with two 

coevolving species. Red curve describes the change in one of the alleles of the parasitic 

species while the blue curve tracks the change in one of the alleles of the host species within 

the hotspot. (1) No gene flow scenario ( ! 2 = 0;!" = 0.02 ) and (2) scenario with gene flow 

connecting the hotspot and the coldspot (! 2 = 0.23;!" = 0.02 ).  

 

iii) Two-site case: local stability  

Let us now consider the same two-sites system in which there is a coevolutionary 

hotspot connected to a coevolutionary coldspot. We restrict our analysis to the special case in 

which the coevolutionary coldspot is at equilibrium, and gene flow is unidirectional, only 

0
0

0.5

1

Gene Flow=0
 
Force of Interaction=0.02

!"

#"

#$%"

&#"!#"

!"#"$%&'#( )*+,- . /)

01
1"

12
3)

4$
"5

6"
#3

2"
()

0
0

0.5

1

Gene Flow=0.23
 
Force of Interaction=0.02

!"

#"

#$%"

&#"!#"

!"#"$%&'#( )*+,- . /)

01
1"

12
3)

4$
"5

6"
#3

2"
()

!"

#"



!
(!

happening from coldspots to hotspots. In that case, only hotspot dynamics will be affected by 

gene flow. Following our Methods section, species in the hotspot interact, reproduce and then 

individuals from the coldspot arrive.  

  Hotspot fitness functions can be described using equations (1) of the online appendix. 

There is no need to consider coldspot fitness functions as the coldspot is assumed not to 

receive migrants from the hotspot and to be at equilibrium. Again, the MAM will have one 

single polymorphic equilibrium at X*=Y*= 12 , and four monomorphic equilibria. The 

reproduction step is embodied by equations (2) of the online appendix and migration was 

described in the main text by equation (7). Here we will consider a special case of such 

equation, by assuming that gene flow is constant; let us call µ  the level of gene flow. This 

modified equation yields post-migration frequencies ( X't+1 ,Y 't+1 ), described by the following 

expression for the two sites case:  

X't+1 = (1! µ)Xt+1 +µC

Y't+1 = (1! µ)Yt+1 +µC

"
#
$

   ,         (7) 

where C  represents the allelic frequency of interest in the coldspot. Since coldspots are at 

equilibrium, C = 1
2 .  

 Now we can find the equilibrium values by solving ! X = ! Y = 0  as in the single-site 

case. Five equilibria can be found that way, one of which is X*=Y*= 12 , the only 

polymorphic equilibrium. Let us assess the stability of the polymorphic equilibrium, applying 

the technique used for the single-site case. By doing so, the Jacobian of the system evaluated 

at X*=Y*= 12  is: 

J
X* ,Y *=

1
2

=
1! µ

! (1! µ)
2+!

!
! (1! µ)

2! !
1! µ
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It is worth noticing that when µ = 0 , the Jacobian of this special two-sites system is reduced 

to the Jacobian of the single-site case. The eigenvalues of (8) are: 

! 1 = (1! µ)+
" (µ ! 1)2

" 2 ! 4         
(9) 

! 1 = (1! µ) !
" (µ ! 1)2

" 2 ! 4
      (10) 

If µ <1 the eigenvalues are complex and the system will undergo either stable or unstable 

oscillations. For the system to be stable, the fitness sensitivity must be 0 <! <1, with 

bounded levels of gene flow, namely 1! 1! ! 2 < µ <1+ 1! ! 2 . In other words, gene flow 

needs to be sufficiently high compared to the fitness sensitivity due to reciprocal selection in 

order to yield a polymorphic equilibrium, but not too high or such polymorphic equilibrium 

would be unstable. 

 

iv) Extension to n-sites 

 The special case for two-sites described in the previous section can be extended to n-

sites, with the same assumptions. In such case, the hotspot would receive migrants from n! 1  

coldspots, but coldspots would receive none from the hotspot. Coldspots are also at 

equilibrium. Here, the spatial structure of the n-sites set of populations can be considered star-

shaped, as a single hotspot receives migrants from n! 1  adjacent coldspots. In the two-sites 

case, the level of gene flow, µ , was such that adding the levels of gene flow across all sites is 

equal to one. Then two sites A and B have gene flow levels µ  and 1!µ , such that 

µ +(1! µ) =1, and three sites A, B and C will have migration levels µ 2 , µ 2  and 1!µ  

respectively, which ensures that µ 2 +µ
2 +(1! µ)=1 . If we continue adding sites, then n 

connected sites A1, É , An  will have migration levels µ
(1! n) , µ

(1! n) , … , 1!µ  
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respectively, which also adds up to one. In this case, hotspot’s post-migration frequencies 

become: 

 
X't+1 = (1!µ)Xt+1 +

µ
n!1

C
i=1

n!1

"

Y't+1 = (1!µ)Yt+1 +
µ

n!1
C

i=1

n!1

"

#

$

%
%

&

%
%

 ,         (11) 

where C  is the coldspot equilibrium frequency, namely 12 . Then, (11) can be rearranged 

into:  

X 't+1 = (1! µ)Xt+1 +(n ! 1)
µ
n ! 1

C

Y 't+1 = (1! µ)Yt+1 +(n ! 1)
µ
n ! 1

C

"

#
$$
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 ,     (12) 

which is equal to (7) after simplification. Hence, n-site dynamics are undistinguishable from 

two-site dynamics in this special case. In other words, the chance of maintaining 

polymorphisms is the same for the n-sites case and for the two-sites case. 

 We have therefore shown that the stability of two-site and n-site models in the case 

where coldspots are at equilibrium and gene flow is unidirectional can be mathematically 

equivalent. These results show that the spatial structure of interacting populations does not 

always influence coevolutionary outcomes under these very restrictive assumptions. 

Nevertheless, these results just hold for the very simple spatial structure considered, and 

uncovers the need for incorporating more complex and realistic spatial structures while 

relaxing the above assumptions. Unfortunately, this task would be prohibitive to undertake 

analytically. In the main text we show how relaxing the unrealistic assumptions of 

unidirectional gene flow and coldspots at equilibrium while taking into account more realistic 

spatial structures such as structures that have different coldspot spatial configurations and 

hotspot location yield significantly different results.  
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B) Laplacian matrix of spatial subgraphs 

i) The Laplacian matrix 

In this section we introduce the Laplacian matrices, which allowed us to assess the 

potential of a given spatial subgraph to exhibit spatial variation in coevolutionary dynamics 

(see Methods). For any given simple graph with n nodes, we can define two associated 

matrices: the adjacency matrix, and the degree matrix. The adjacency matrix 

is A =[!ij ]n!n where: 

! ij =
1,
0,

if nodesi and j areconnected

otherwise

!
"
#

$#
.                                     (13) 

The associated degree matrix is D =[dij ]n! n . The degree matrix is diagonal, with the number 

of links of each node i, or degree ( ki ). Formally:  

dij =
ki i = j

0, i ! j

"
#
$

%$
,                      (14) 

The Laplacian matrix is L =[lij ]n!n , such that L = D ! A . Hence: 

lij =

ki ,

! 1,

0,

"

#
$$

%
$
$

if i = j

if i & j and nodesi and j areconnected

otherwise

.     (15) 

The Laplacian matrix can be used to investigate graph connectivity (Mohar 1997) and how 

prone a system is to exhibit synchronized dynamics (Barahona and Pecora 2002, see 

“Synchronizability and the Laplacian matrix” section). Also note that 

lij =
j

! ki " ! ij
j#i

! = ki " ki = 0 in any graph without loops (i.e. a graph where! ii = 0 ), which 

ensures that at least one eigenvalue is zero, and that all others are real and can be ordered as 

0 = ! 1 < ! 2 <... < ! max .    
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ii) Synchronizability and the Laplacian matrix 

In this section we first introduce the notion of synchronic dynamic behavior in a 

graph. If a graph, such as the spatial subgraphs studied in the present work (see Fig. 1), 

exhibits spatial synchronic coevolutionary dynamics, it will not show any sort of spatial 

variation in coevolutionary outcomes. Because geographic variation is a key aspect of the 

coevolutionary process (Thompson 2005), it is therefore relevant to assess the potential of a 

given spatial subgraph to exhibit synchronic behavior. Below, these notions are explained in 

detail. Second, it will be shown in the following sections how our Matching Alleles Model 

(see Methods) can be embedded in the Laplacian matrix framework of measuring synchrony 

potential by using equation (19), which is derived in the present section.  

Let us consider n identical oscillators. Oscillators are systems that fluctuate in 

deterministic ways between two extreme values such as physical pendulums (Teschl 2012), 

Lotka-Volterra predator-prey systems (Hofbauer and Sigmund 1998), or synchronic masting 

oak trees (Koening and Knops 1998). The dynamics of the i-th oscillator is governed by: 

x'i (t) = F( xi (t) ) .          (16) 

To simplify the notation xi (t) = xi , hereafter, with xi  being a function of time. Each oscillator 

represents a node in a graph. Oscillators are coupled if the dynamics in the i-th node affects 

the dynamics in all other nodes that are connected to it. A way of formalizing that coupling 

for the i-th node is: 

     x'i = F( xi )+! " ij H(xj ) ! H(xi )( )
j

" ,     (17) 

where ! ij are elements of the associated adjacency matrix, ! is a parameter that specifies the 

strength of the coupling, and F  and H  are functions describing the dynamics of the 

oscillators considered (Barahona and Pecora 2002). Then (17) can be written as a function of 

the Laplacian matrix after some steps:  
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x'i = F( xi )+! " ij H(xj ) ! " ij H(xi )"# $%
j

&  

! x'i = F( xi )+! " ij H(xj ) " H(xi ) ! ij
j

#
j

#
$

%
&
&

'

(
)
)
.    (18) 

Because H (x j ) ! H (xi ) = 0  when j=i , it is possible to make the sums in (18) to be over all j 

but j=i , as the term does not contribute to the sum. Then, by noting that ! ij
j

! = ki , equation 

(18) can be rewritten as follows: 

x 'i = F( xi )+! "ij H (xj )
j

!
"

#
$$

%

&
'' ( H (xi )ki

)

*
+
+

,

-
.
.
 

! x'i = F( xi ) " ! H(xi )ki " aij H(xj )
j

#
$

%
&
&

'

(
)
)
 

! x 'i = F( xi ) " ! lij H (xj )
j

#        (19) 

For equation (19) to exhibit fully synchronized behavior, we need that xi (t) = x* (t), ! i , 

where x*(t)  is a solution of the system. The local stability of the fully synchronized state in 

(19) can be studied through its master stability function (Barahona and Pecora 2002). This 

procedure yields that the higher the eigenratio ! 2 / ! max , the higher is the likelihood of 

synchronization. As the eigenratio decreases, so does the potential for exhibiting 

synchronized dynamics. Thus, the potential of a graph of exhibiting synchronized dynamics 

can be measured through the eigenratio ! 2 / ! max  associated to its Laplacian matrix.  

 

iii) MAM as a time continuous oscillator 

In this section we show that the spatially explicit Matching Alleles Model described in 

the main text (see Methods section) can be mapped into (19). Therefore, we can assess the 

potential of every given spatial subgraph – including larger networks not explored in our 
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study - to exhibit synchronized behavior. In other words, we can assess, for each spatial 

subgraph, whether they are prone to exhibit spatially invariable (synchronic) or spatially 

variable (asynchronous) coevolutionary dynamics by analyzing their Laplacian matrices.  

To do so, we first explain how the MAM model can be written as a time-continuous 

oscillator. We will focus on the equations governing the dynamics of one allele of a single 

species to simplify the notation, but it is straightforward to extend the entire proof to n-

species and alleles. First, we need to show that MAM dynamics can be mapped into 

oscillatory continuous-time models, such as the replicator equation: 

xi '(t) = xi (t)[ fi (x) ! ! (x)] ,          (20) 

where xi (t) is the frequency of allele i at time t, x is vector of all possible genetic frequencies 

(i.e. x = (x1,..., xn) ), fi (x)  is the fitness of allele xi  in the population, and !(x) is the average 

population fitness (i.e. ! (x) = x j f j (x)
j=1

n

! ) (Ohtsuki and Nowak 2006). To do so, let us take 

equation (2) of the online appendix and let us consider a spatial explicit version of it, where 

we specify the frequency of allele X of a given species in each site. Then equation (2) for the 

i-th site becomes:  

Xi
t+1 =

Xi
tWXt

Xi
tWXt +(1! Xi

t )Wxt

,      (21) 

where Xi
t  is the frequency of allele X at time t and site i, WXt  is the fitness for allele X at 

time t , and Wxt  is the fitness of allele x  at time t  (see methods for a definition of fitness). 

As explained in section A of the online appendix, we can take the difference of the 

frequencies of two consecutive time steps as an estimate of the rate of change: 

! Xi = Xi
t+1 " Xi

t
. This difference equation can be re-worked as: 

! Xi =
Xi

tWXt

Xi
tWXt + (1" Xi

t )Wxt

" Xi
t  
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! " Xi = Xi
t WXt

Xi
tWXt +(1# Xi

t )Wxt

#1
$

%
&&

'

(
))  

! " Xi =
Xi

t

Xi
tWXt +(1# Xi

t )Wxt

WXt # Xi
tWXt +(1# Xi

t )Wxt( )$
%

&
'    (22) 

If we observe that Xi
tWXt +(1! Xi

t )Wxt = ! , the average population fitness, and that WXt = fi , 

the fitness of allele X given the population, we can re-write (22) as: ! Xi =
Xi

t

!
fX " ![ ] . 

Because ! undergoes dampened oscillations as the system goes to equilibrium, the difference 

between equation (22) and (20) fades out too. At the equilibrium, (22) behaves exactly as 

(20), while away from the equilibrium the difference between the two is the scaling factor ! , 

which is known and varies deterministically. Thus, the time-discrete MAM model used in the 

main text can be mapped into a time-continuous oscillatory model as the replicator equation.  

Next, we will show how this is still true when we consider gene flow across sites. To 

consider gene flow between sites, we use equation (7) of the main text (see Methods), so that 

the post-migration frequency of allele X at site i would be: 

Xi
t+1

post! migration

= M(i, j )Xj
t+1

j=1

n

"        (23) 

Then, assuming that gene flow does not change with time, we can calculate the rate of change 

as follows:  

! Xi

post" migration

= M (i, j )Xj
t+1

j=1

n

# " M (i, j )Xj
t

j=1

n

#  

! " Xi

post#migration

= M(i, j )
Xj

tWXt

Xj
tWXt + (1# Xj

t )Wxtj=1

n

$ # M(i, j )Xj
t

j=1

n

$  

! " Xi

post#migration

= M(i, j )
j=1

n

$
Xj

tWXt

Xj
tWXt +(1# Xj

t )Wxt

# Xj
t

%

&
'
'

(

)
*
*

.       (24) 
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Equation (24) can be written as: ! Xi

post" migration

= M(i, j )
Xj

t

! j

fX " ! j
#$ %&

j=1

n

' , which is a weighted sum 

of scaled replicator equations. It is therefore safe to assume that the dynamics analyzed in the 

main text are described in continuous time by the following equation: 

Xi '(t) = M (i, j ) !H Xj (t)( )
j=1

n

! ,      (25) 

where Xi  is the frequency of allele X at time t and !H is a function that maintains the dynamic 

properties of (20), such as 
Xj

t

! j

fX ! ! j
"# $%, the scaled replicator equation. 

 

iv) Writing the time-continuous MAM as a function of the Laplacian matrix 

In this section we show that it is possible to rewrite equation (25) (i.e. time continuous 

MAM) as equation (19), and hence, as a function of the Laplacian matrix. By doing so, we 

show that we can analyze the potential of each spatial subgraph to exhibit spatially varying 

coevolutionary dynamics. We will first focus on the binary structure of the spatial subgraphs, 

and then we will extend our method to the weighted structure, i.e. the spatial subgraphs 

considering gene flow between sites. 

Let us start by observing that M(i, j )  can be written as a weighted adjacency matrix 

such that M(i, j ) =! ij" ij  (similar as in Nishikawa and Motter 2006), where ! ij  is an element 

of the adjacency matrix and ! ij is a weight, here, gene flow magnitude. Now we focus in the 

case where all weights are equal to 1, so that M(i, j ) =!ij , and thus only considers the binary 

structure of the spatial subgraphs. In this case, equation (25) can be written as: 

Xi ' = ! ij
!H Xj( )

j=1

n

! .        (26) 

We can now rewrite equation (26) as (19): 
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Xi ' = ! ij
!H Xj( ) ! !H Xi( )+ !H Xi( )"# $%

j=1

n

&      (27) 

! Xi ' = ! ij
!H Xj( ) " !H Xi( )#$ %&

j=1

n

' + ! ij
j=1

n

' !H Xi( )

!F (Xi )" #$ %$

    (28) 

Equation (28) has the same functional form than equation (17), and can thus be rewritten as 

equation (19):  

    Xi ' = !F(Xi ) ! lij !H Xj( )
j=1

n

" ,       (29) 

where lij  is an element of the Laplacian matrix L , where lij =!! ij and. We have therefore 

shown that the synchronizability of the MAM model can be assessed through the binary 

Laplacian matrix of the spatial subgraphs when gene flow is constant across all sites and 

equal to 1.  

Next we will extend the same argument to weighted Laplacian matrices, which can thus 

take gene flow between sites into account. To do so, we can think about the gene flow matrix, 

M(i, j ) , as a weighted adjacency matrix. Basically, it is a gene flow magnitude times 1 when 

two sites are connected, or 0, when two sites are not connected. Formally: M (i, j) =!ij" ij . 

Then, equation (26) becomes:  

Xi ' = ! ij" ij
!H Xj( )

j=1

n

! .       (30) 

And we follow a similar procedure than with equation (26), such that (30) can be rewritten as: 

Xi ' = ! ij" ij
!H Xi( )+ ! ij" ij

!H Xj( )! !H Xi( )+ !H Xi( )"# $%
j=1
j&i

n

' .    (31) 

Note that compared to (27), the only change (besides the fact that we are considering 

weights), is that we are explicitly taking the dynamics of the focal node i out of the sum. We 

can rewrite (31) as:  



!
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Xi ' = ! ij" ij
!H Xi( )+ ! ij" ij

!H Xj( )! !H Xi( )"# $%
j=1
j&i

n

' + ! ij" ij
!H Xi( )

j=1
j&i

n

'  

! Xi ' = ! ij" ij
!H Xi( )

j=1

n

"

öF(Xi )! "## $# #

+ !ij" ij
!H Xj( ) # !H Xi( )$% &'

j=1
j( i

n

"  

Xi ' = öF(Xi ) ! ölij !H Xj( )
j=1

n

" ,                     (32) 

where öF is a function that has the same dynamic properties than F and !F , but takes into 

account gene flow, and ölij = ! ! ij" ij  and ölii = !ij" ij
j ! i

n

" (similar to what Nishikawa and Motter 

2006, have found). We have therefore shown that we can use both the binary (non-weighted) 

Laplacian matrix and weighted (taking gene flow into account) Laplacian matrix associated to 

each spatial subgraph to assess how prone they are to exhibit spatially varying coevolutionary 

dynamics.  

 

v) Assessing synchronizability using the binary structure of spatial subgraphs 

In this section we analyze how prone each of the four spatial subgraphs analyzed in the 

main text (i.e. star, cycle, linear and modular) are to exhibit spatially varying coevolutionary 

dynamics. If they are highly synchronizable, they are less prone to exhibit spatially variable 

coevolutionary dynamics. The Laplacian matrices for each structure are (note that L = D ! A ): 

Lstar =

5 ! 1 ! 1 ! 1 ! 1 ! 1
! 1 1 0 0 0 0
! 1 0 1 0 0 0
! 1 0 0 1 0 0
! 1 0 0 0 1 0
! 1 0 0 0 0 1
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$
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'
'

,      (33) 
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Lcycle =

2 ! 1 0 0 0 ! 1
! 1 2 ! 1 0 0 0
0 ! 1 2 ! 1 0 0
0 0 ! 1 2 ! 1 0
0 0 0 ! 1 2 ! 1
! 1 0 0 0 ! 1 2
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#
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,      (34) 

Llinear =

1 ! 1 0 0 0 0
! 1 2 ! 1 0 0 0
0 ! 1 2 ! 1 0 0
0 0 ! 1 2 ! 1 0
0 0 0 ! 1 2 ! 1
0 0 0 0 ! 1 1
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#
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,      (35) 

Lmodular =

3 ! 1 ! 1 ! 1 0 0
! 1 2 ! 1 0 0 0
! 1 ! 1 2 0 0 0
! 1 0 0 3 ! 1 ! 1
0 0 0 ! 1 2 ! 1
0 0 0 ! 1 ! 1 2
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#
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%

&

'
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.      (36) 

For each case, we calculated the eigenratio ! 2 / ! max , and ranked the spatial structures 

according to their proneness to exhibit spatial variation in coevolutionary dynamics (Table 

B1). If the eigenratio is closer to 1, then the spatial structure is highly synchronizable and 

hence less prone to exhibit spatially variable coevolutionary dynamics. If the eigenratio is 

closer to 0, the spatial structure is poorly synchronizable and hence more prone to exhibit 

spatial variation in coevolutionary dynamics.  

Our results suggest that the likelihood of spatially variable coevolutionary dynamics at a 

network scale is maximal for the linear and modular structures, and is minimal for the star and 

cycle. The results at the network level dynamics are consistent to a great extent with the 

results at the local level (within sites). At a local level, we observed that higher gene flow 

promotes synchronized dynamics between contiguous sites (see online appendix C). This 

local synchronization can cascade up with time, eventually leading to synchronization of the 

entire network. The latter was observed at high gene flow levels, where unstable dynamics of 
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the hotspot cascade throughout the entire subgraph, leading to a network level synchronic 

unstable state (online appendix C). Hence, the unstable region at high levels of gene flow in  

fig. 2 (high ! ) is characterized by unstable oscillatory dynamics where synchronization is 

likely and common (online appendix C). The size of this unstable region can thus be 

considered as proxy for the likelihood of a given subgraph to exhibit spatially variable 

coevolutionary dynamics.  

The results of the binary Laplacian matrix are thus largely consistent with our 

simulations (see Table B1 and fig. 2 of main text). Departures of some of our simulations 

from these theoretical predictions can be explained by the idiosyncratic effect of hotspot 

position and hotspot connectivity. For example, if we consider the star structure with 

peripheral hotspot, our simulation results match perfectly well the predictions of the binary 

Laplacian matrix. However, these predictions do not hold for the star structure with central 

hotspot, as it seems to be more prone to synchronize than the cycle. Inferences based on the 

Laplacian matrix often focuses on the dynamics among sites but in some situations the effects 

due to the differences in the dynamics within sites (e.g., coldspots vs. hotspots) would lead to 

departures to the predictions derived from the Laplacian matrices. Therefore, although the 

Laplacian matrix can accurately predict the global likelihood for a given subgraph to exhibit 

spatially variable coevolutionary dynamics, there are situations in which the assumption of 

site equivalence is crucial and the analytic predictions deviate from the simulation results. 

Thus, it is always paramount to take into account the factors described in the main text as 

major drivers of coevolution and combine information of hotspot connectivity, hotspot 

centrality and the spatial configuration of coldspots.  

Two questions still remain. First, what would happen to the predictions of the binary 

Laplacian matrix if we consider spatial structures with more than 6 sites? Second, what would 
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happen to these predictions if we consider the magnitude of gene flow between sites, instead 

of only their binary structure? Both questions are answered in the following two sections. 

 

Table B1: Eigenratio for each subgraph and likelihood of exhibiting 
spatially variable coevolutionary dynamics. 

 EigenRatio ! 2

! max

!

"
#

$

%
&  Predicted likelihood of spatially 

variable coevolutionary dynamics 
Cycle 0.250 Very unlikely 
Star 0.170  

Modular 0.096  
Linear 0.072 Very likely 

 

 

vi) Assessing the effect of site addition upon Laplacian predictions 

In this section we show that the predictions of the binary Laplacian matrix are in 

general robust to variations in the number of sites. To do so, we first added more sites to each 

subgraph in such a way that it would not affect the general structure of the graph. In the star, 

we connected more sites to the hotspot, in a way similar to fig. 4-A to E of the main text. For 

the cycle, we just considered cycles with higher number of sites (i.e., 7-cycle, 8-cycle and so 

on). For the linear structure, we connected sites to one of the ends of the structure, in a way 

similar to fig. 4-F to G of the main text. Because the modular structure is not a regular graph 

such as the star, the cycle and the linear, site-addition can occur either in the modules (fig. 

B1-A), or in the connection between modules (fig. B1-B). We explored both scenarios, and 

calculated the eigenratio ! 2 / ! max  of the binary Laplacian matrix for each of the resulting 

structures and number of sites (fig. B2). 

It can be seen that as the number of sites increase, the eigenratios decrease, but the 

curves rarely cross each other (fig. 6). First, this indicates the larger the number of sites, the 

lower is the likelihood of synchronization. Second, and more importantly, these results 

suggest that the predictions of the binary Laplacian matrix are in general robust to variations 
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in the number of sites. Nevertheless, the eigenratio of the star structure becomes larger than 

that of the cycle after they reached a size of approximately 10 sites. Finally, depending on 

where sites are added, the likelihood of the modular structure to exhibit spatially varying 

coevolutionary dynamics changes. When sites are added to each module, the likelihood 

remains different to that of a linear subgraph. When sites are added to the connection between 

modules, the likelihood becomes more and more similar to that of a linear structure. This 

result highlights the importance of the spatial configuration of coldspots in the overall spatial 

structure.  
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Figure B1: The two possible procedures of site addition are depicted for the modular 

subgraph. A. Site addition by module enlargement (called Modular-C, because each module is 

a cycle). B. Site addition by enlargement of the connection between modules (calles Modular-

L, because as the connection between modules gets enlarged, it the whole structure becomes 

more and more similar to a linear subgraph). 
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vii) Assessing synchronizability using spatial subgraphs and information on gene flow 

In this section we show that using the Laplacian method solely based on the binary 

structure of a spatial subgraph is sufficient to make accurate predictions on the likelihood of a 

given spatial subgraph to exhibit spatially variable coevolutionary dynamics. Although 

considering gene flow between sites may be relevant for making quantitative predictions, 

these can be adequately estimated from the binary structure, which has important implications 

for testing our ideas in the field. 

To do so, we use the previously derived equation (32) (see section iv) to incorporate 

gene flow magnitudes to the Laplacian matrices associated to each spatial subgraph. Equation 

(32) shows that lij = ! ! ij" ij  and lii = ! ij" ij
j ! 1

n

" , where ! ij  is the gene flow between sites i and 

j, or M(i,j), defined as M(i, j ) =

exp !
1
2

dij

!

"

#
$

%

&
'

2(

)
*
*

+

,
-
-

exp !
1
2

dij

!

"

#
$

%

&
'

2(

)
*
*

+

,
-
-j=1

n

.

. Then, we obtain:  
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We can now calculate the eigenratio ! 2 / ! max  for each of the subgraphs as a function of ! . 

Our results suggest that the predictions made by the quantitative Laplacian matrix show some 

deviances from those made by the binary Laplacian matrix (fig. 6). Nevertheless, these 

differences are in general small, rapidly reaching asymptotic values, suggesting that the 

predictions made by the binary Laplacian matrix are good qualitative estimates of those made 

by the Laplacian matrix that considers gene flow between sites.      

 

viii) The Laplacian matrix as a predictor for local dynamics. 

 If the Laplacian matrix is a good predictor of global, network-scale dynamics it should 

also be a good predictor for local dynamics. Although the latter may be affected by hotspot 

connectivity, coldspot configuration and distance to hotspot, if the entire network is able to 

maintain polymorphisms, then each site should also be able to do so. A plot of the asymptotic 

eigenratio of the analyzed spatial subgraphs with infinite amount of sites against the 

probability of stable dynamics in the hotspots shows a one-to-one relationship (fig. B2). Thus, 

as suggested by the theory of diffusion in networks, we found that smaller eigenratios are 

associated with larger probabilities of stable dynamics, and the Laplacian matrices are indeed 
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good estimators of local coevolutionary dynamics, as well as of global, network-scale 

coevolutionary dynamics.   
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Figure B2: Plot of mean Probability of Stable coevolutionary dynamics in the hotspot against 

asymptotic Eigenratio of each of the four different considered spatial networks. Note hotspot 

centrality does not affect Laplacian matrices. For the asymptotic eigenratio of the modular 

spatial network, we took the mean of the two possible versions, Modular-C and Modular-L 

(Figure B1). It can be seen that as the eigenratio increases, the probability of having stable, 

synchronic coevolutionary dynamics decreases. These stable synchronic dynamics yield in 

turn polymorphic populations. Hence, increased eigenratio yields a smaller probability of 

maintaining polymorphisms and showing spatially varying coevolutionary dynamics.  
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C) How to use the Laplacian matrix in real systems  

i) Parameterizing the Laplacian with real data: 

 To use the Laplacian matrices of real spatial networks to either test our results, or 

predict possible future coevolutionary dynamics, it would be necessary to gather information 

on: (1) the number of sites the landscape is divided in, and (2) the magnitude of gene flow 

between each pair of sites, or at least whether gene flow occurs, or not. One possible way to 

estimate gene flow is using: 

Nm=
1! Fst

4Fst

,         (41) 

where Nm  is the number of individual migrants per generation, and Fst  is Wright’s measure 

of population differentiation due to genetic structure, which can conveniently be estimated 

from genetic polymorphism data (Cockerham and Weir 1993). However, other possible ways 

to measure gene flow are also available (see Holsinger and Weir 2009 for a review of them). 

Assuming this information can be gathered, it would be possible to proceed with the 

parameterization of the Laplacian matrix of the system. 

 First, we need to depict the spatial network as an adjacency matrix (see (13) of the 

online appendix). Because we do not consider direction, the matrix is symmetric:  

A =

0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 1
1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0 0 0 0 1 0
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The associated binary Laplacian matrix, L, for the above adjacency matrix is defined by 

L = D!A , where D  is the degree matrix (see eq. (14) of the online appendix). Thus, the 

binary Laplacian matrix is: 

Lbinary =

13 !1 !1 !1 !1 !1 !1 !1 !1 !1 !1 !1 !1 !1
!1 3 !1 0 0 0 0 0 0 0 0 0 0 !1
!1 !1 3 !1 0 0 0 0 0 0 0 0 0 0
!1 0 !1 3 !1 0 0 0 0 0 0 0 0 0
!1 0 0 !1 3 !1 0 0 0 0 0 0 0 0
!1 0 0 0 !1 3 !1 0 0 0 0 0 0 0
!1 0 0 0 0 !1 3 !1 0 0 0 0 0 0
!1 0 0 0 0 0 !1 3 !1 0 0 0 0 0
!1 0 0 0 0 0 0 !1 3 !1 0 0 0 0
!1 0 0 0 0 0 0 0 !1 3 !1 0 0 0
!1 0 0 0 0 0 0 0 0 !1 3 !1 0 0
!1 0 0 0 0 0 0 0 0 0 !1 3 !1 0
!1 0 0 0 0 0 0 0 0 0 0 !1 3 !1
!1 !1 0 0 0 0 0 0 0 0 0 0 !1 3
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Using real data, one could now calculate the eigenratio of the binary Laplacian matrix for the 

spatial network in fig. C1 (fig C2). Second, we can now incorporate the information available 

in fig.C1 with respect to gene flow, in a weighted adjacency matrix, by substituting the 1s for 

the actual value of gene flow between each pair of sites (dots depicting zeros to improve 

visualization): 

Aweighted =

. .2 .2 .3 .5 .2 .2 .3 .3 .3 .2 .2 .2 .2
.2 . .8 . . . . . . . . . . .5
.2 .8 . .1 . . . . . . . . . .
.3 . .1 . .2 . . . . . . . . .
.5 . . .2 . .2 . . . . . . . .
.2 . . . .2 . .2 . . . . . . .
.2 . . . . .2 . .3 . . . . . .
.3 . . . . . .3 . .9 . . . . .
.3 . . . . . . .9 . .2 . . . .
.3 . . . . . . . .2 . .3 . . .
.2 . . . . . . . . .3 . .3 . .
.2 . . . . . . . . . .3 . .4 .
.2 . . . . . . . . . . .4 . .4
.2 .5 . . . . . . . . . . .4 .
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 To calculate the weighted Laplacian matrix, we first multiply all elements of the 

weighted adjacency matrix by -1. Then, we substitute each diagonal element with the sum of 

the absolute value of all elements in its respective row yielding: 

Lweight =

3.3 ! .2 ! .2 ! .3 ! .5 ! .2 ! .2 ! .3 ! .3 ! .3 ! .2 ! .2 ! .2 ! .2
! .2 1.5 ! .8 . . . . . . . . . . ! .5
! .2 ! .8 1.1 ! .1 . . . . . . . . . .
! .3 . ! .1 0.6 ! .2 . . . . . . . . .
! .5 . . ! .2 0.9 ! .2 . . . . . . . .
! .2 . . . ! .2 0.6 ! .2 . . . . . . .
! .2 . . . . ! .2 0.7 ! .3 . . . . . .
! .3 . . . . . ! .3 1.5 ! .9 . . . . .
! .3 . . . . . . ! .9 1.4 ! .2 . . . .
! .3 . . . . . . . ! .2 0.8 ! .3 . . .
! .2 . . . . . . . . ! .3 0.8 ! .3 . .
! .2 . . . . . . . . . ! .3 0.9 ! .4 .
! .2 . . . . . . . . . . ! .4 1 ! .4
! .2 ! .5 . . . . . . . . . . ! .4 1.1
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.(43) 

Using the weighted Laplacian matrix it is possible to calculate the eigenratio, and compare it 

with the binary one (fig. 6-A, of the main text).  
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Figure C1: Hypothetical example of an “observed” spatial network to show how to 

parameterize the Laplacian matrix with real data. Black dots depict sites (identified by black 

numbers) and blue lines depict the existence of gene flow between sites. Red numbers 

quantify the amount of gene flow between pairs of sites. 

 

D) Laplacian matrix in networks with varying levels of gene flow    

i) Inferences from a simpler scenario 

 Testing how varying levels of gene flow across sites affect coevolutionary dynamics is 

beyond the scope of the present paper. However, it is possible to make informed hypotheses 

to this extent based on our results for the simpler case where gene flow is constant across all 

sites in a given network. To illustrate this, we focus on a spatial configuration that combines 
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two configurations, a star and a cycle (fig. D1). Because of this, it is likely that the dynamics 

of the whole network are driven by the collective dynamics of the star and the cycle.  

To test this hypothesis, it is useful to note that the weighted adjacency matrix of the 

observed network can be written as the sum of two adjacency matrices: Aweighted = Astar + Acycle . 

If we assume that gene flow magnitude is different in both sub-networks, we can write: 

Aweighted =!Astar +"Acycle . By varying !  and !  from 1 to 0, we get a scenario where gene flow 

is not constant across all sites. Thus, it is possible to assess whether our results would also 

hold in the case where gene flow is not constant across sites, and whether whole network 

dynamics can be understood as the collective dynamics of smaller, building sub-networks.  

We find that the smaller the gene flow within any of the sub-networks, the less similar 

the dynamics become to what would be expected for the sub-network alone (fig. D2). For 

example, the smaller !  is, the less similar is the dynamics to the cycle sub-network and the 

more similar the dynamics of the whole network are to the dynamics in the star sub-network. 

This suggests that some of our conclusions may hold in considerably more complex scenarios 

as far as it is possible to break down the observed structure into smaller sub-networks. 

However, we have also found some degree of non-linearity (fig. D2), suggesting that some 

combinations of spatial configurations might lead to idiosyncratic effects on coevolutionary 

dynamics.  
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Figure D1: Depicts how the “observed” spatial network can be obtained by combining two 

sub-networks: a star, and a cycle. 
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Figure D2: Plot of the eigenratio against the subgraph multiplier !  (star multiplier, in red) 

and !  (cycle multipler, in blue). The baseline values are ! = ! =1. For !  = 0 the eigenratio is 

zero, since there is one isolated site from the cycle and as a consequence the second smallest 

eigenvalue is also zero. As !  goes from 0 to 1, the eigenratio shifts from zero to the 

eigenratio of the observed network. Also, as !  goes from 0 to 1, the eigenratio goes from a 

star-like eigenratio to the eigenratio of the whole network. This suggests that the eigenratio of 

the entire network can indeed be understood as the collective dynamics of known sub-

networks, even when gene flow is not constant across all sites. 

 

 

 

 

E) Exploration of the space of parameters. 

i) Baseline parameters: 
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Here we show the expected coevolutionary dynamics for specific combinations of gene 

flow strength (! 2 ) and the strength of reciprocal selection ( ! ). Because of the large space of 

parameters studied, we chose to show some particular combinations of ! 2  and !  to give a 

better idea of the general dynamics expected for each structure. Here,  ! 2  takes the values 

0.19, 0.21, 0.25 and 0.31. Although these values look close to each other, the coevolutionary 

dynamics are very sensitive to a change in ! 2 , allowing us to explore different qualitative 

dynamics both within and among spatial structures. In the case of ! , we rather preferred to 

explore almost three orders of magnitude (0.002, 0.006, 0.01, and 0.1.), since coevolutionary 

dynamics are less sensitive to a change in the strength of reciprocal selection. 

 

ii) Explanation of figures below: 
 

Each of the pages below corresponds to the coevolutionary dynamics obtained for a 

single value of ! 2 , and all possible !  values. That is, there are four pages for each spatial 

structure, one for each of the ! 2  considered. Each of these pages has in turn four plots, 

corresponding to the four possible values of ! . Also, each page is divided in four sections. 

The upper left section shows the spatial structure of considered. The upper right section, “ ! ”, 

indicates that below are plotted the coevolutionary dynamics for each value of ! . The lower 

left section shows the value of ! 2  that is being considered in that page. Finally, the lower 

right section has four quadrants with a plot in each one, i.e. all possible coevolutionary 

dynamics for that given spatial structure and combination of gene flow strength and strength 

of reciprocal selection. 

For each plot, the x-axis corresponds to time in generations (! 104) and the y-axis 

corresponds to allelic frequency. The red curve tracks the change of one of the alleles of the 

parasitic species in the hotspot, while the blue curve tracks the change of one of the alleles of 



!
$&!

the parasitic species in the closer coldspot to the considered hotspot (the allelic dynamics of 

the other species match the one considered but is slightly shifted). In the upper left corner, the 

spatial network depicted follows the same color code, indicating which coldspots and hotspots 

are being considered. We just plotted the coevolutionary dynamics of the parasitic species in 

order to simplify the visualization, since host and parasite dynamics are qualitatively the same 

(fig. A). 
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