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Predicting food web structure in future climates is a pressing goal of ecology.
These predictions may be impossible without a solid understanding of the
factors that structure current food webs. The most fundamental aspect of
food web structure—the relationship between the number of links and
species—is still poorly understood. Some species interactions may be phys-
ically or physiologically ‘forbidden’—like consumption by non-consumer
species—with possible consequences for food web structure. We show that
accounting for these ‘forbidden interactions’ constrains the feasible link-
species space, in tight agreement with empirical data. Rather than following
one particular scaling relationship, food webs are distributed throughout
this space according to shared biotic and abiotic features. Our study
provides new insights into the long-standing question of which factors
determine this fundamental aspect of food web structure.

Anticipating food web responses to environmental change is a pressing issue
[1-4]. Yet, doing so is challenging owing to the inherent complexity of food
web structure and dynamics [5,6]. Failure to account for the many underlying
mechanisms—biotic and abiotic—that constrain food webs makes predicting
possible future responses difficult. Gaining the fundamental understanding
upon which to ground predictive models should thus be a major focus of
food web ecology [7,8], but progress has proceeded slowly owing to a lack of
highly resolved food web data that span across environmental conditions [9].

Despite these limitations, ecologists have uncovered many fundamental
laws governing food web structure [1,10-22]. For example, larger ecosystems
harbour more diverse communities with more trophic levels [23]—although
the number of trophic levels is lower than expected owing to the inefficient
transfer of energy and matter [24,25]. More fundamentally, the number of feed-
ing interactions, or links (L), increases—unsurprisingly—with the number of
species (S) [26,27]. Competing hypotheses have been proposed to explain this
foundational pattern, yet it remains poorly understood [28], suggesting a strik-
ing lack of understanding of the most fundamental factors constraining food
web structure.

According to Martinez’s constant connectance hypothesis, L increases in pro-
portion to the total possible number of species interactions, S* [29]. The
minimal connectance model represents the extreme scenario where species are
connected to at least one other species, resulting in L increasing as S —1 [29].
Last, the recent flexible links model unifies these two extremes, thus making scal-
ing predictions within those boundaries [28]. Tests of these hypotheses suggest
that the actual scaling lies somewhere in between the estimated scaling expo-
nent of 1 predicted by minimal connectance, and 2, for the constant connectance
hypothesis [28-30]. As a result, food webs should occur on a continuum, some-
where between minimally connected food webs and fully interconnected ones
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Figure 1. (a) Adjacency matrix with black squares representing links (1s) and blanks representing the absence of links (0s). Forbidden links are shown in pink
shading. (b) L-S space, where solid lines represent limits imposed by constant connectance and minimal connectance, while coloured lines represent how the
presence of non-consumers (forbidden links) may reduce the upper boundary of that space. (c) Quantile regression showing the 0.1 and 0.9 quantile regressions
in colour. Upper limit as predicted by our results, and lower limit as predicted by minimal connectance.

[29]. This fact rejects the notion of a one-size-fits-all scaling
between L and S, but this point has received little attention.
The number and quality of available food webs makes it
possible to revisit this classic debate. Furthermore, rapidly
changing environmental conditions are expected to alter mul-
tiple aspects of food web structure [3,7,8,31], some of which
may influence, or be influenced by, the relationship between
L and S, like the proportion of apex and basal species [3] and
the arrangement of feeding interactions across trophic levels
(e.g. degree of omnivory, maximum trophic level, modular-
ity) [7,8,31]. Food webs in different ecosystem types and
latitudes are also likely to respond to these changes differen-
tially [8,32]. It is therefore more important than ever to
understand how these biotic and abiotic factors determine
the relationship between L and S in food webs.
Additionally, we now know that phenotypic and physio-
logical mismatches between consumers and their resources
can lead to ‘forbidden interactions’ [16,33-36]. Perhaps the
most fundamental type of forbidden interaction occurs in
organisms that do not rely on the consumption of others to
meet their energetic demands (i.e. autotrophs, chemotrophs),
but it may also be common among organisms for whom
predation is physically or physiologically impossible (e.g. bio-
mechanical mismatches like gape-limitation in aquatic systems
[25,37]). Yet, hypotheses that aim to explain the L-S relation-
ship usually do not account for forbidden interactions,
despite their potential influence on food web structure [38-40].
Here, we bridge these gaps by exploring how forbidden
interactions, in particular those between non-consumers
and other species, may constrain the L-S relationship. We
use empirical food webs from across the globe to show that
(i) rather than following a single log-linear relationship,
food webs occupy a well-defined feasible space within the
L-S plane with boundaries that can be predicted from
theory, and (ii) food webs closer—or farther away—from
those boundaries, share common biotic and abiotic features.

2. Methods

(a) LS scaling and forbidden interactions

Food webs are represented by an adjacency matrix where 1 indi-
cates that a species in the i-th row is consumed by one in the j-th
column and 0 indicates the absence of a link (figure 1a).

Following standard practices [10,16,29,41-48] all links are
directed. Directed connectance (C)—the classic metric of linkage
density—is calculated as the ratio between realized links (the sum
of all 1s in the adjacency matrix) and the total possible number of
links (the square of the number of species, 5%) (figure 1a). The con-
stant connectance hypothesis assumes that C is constant across
food webs, thus L = CS?, with a maximum of L = S? when
C=1. Minimal connectance requires that L = S—1 so that
every species has at least one connection to another species.

In all food webs, there should be a fraction of species that do
not consume any other species for several possible reasons. If we
consider a fraction f of non-consumer species, then the total
number of non-consumers is S, while that of consumers is
(1 — B)S (figure 1a). By ignoring non-consumers, classic directed
connectance overestimates the maximum possible number of
links within food webs. To resolve this, we calculate connectance
as the fraction of realized links (L) divided by all possible links
(5% from which the number of forbidden links due to non-con-
sumers ($S%) has been subtracted (or S? — BS?, figure 1a). This
results in a new expression for connectance: C =L/ (82(1 — B),
which is larger than classic connectance for > 0. Rearranging
and taking logarithms yields log (L) = log (C(1 — B)) + 2log (S),
where log (C(1 — pB)) is the intercept. Assuming C=1, we can
find an upper boundary for L in L-S space that depends on
1 — B (figure 1a). Because C =1 sets the upper limit given the con-
stant connectance hypothesis, this new upper limit should be
interpreted as the magnitude by which forbidden interactions
lower the theoretical limit predicted by constant connectance,
which can be estimated by quantifying 3 from data.

(b) Empirical food webs and data analyses

The 65 food webs used are described elsewhere [16,45] and were
taken from the Interaction Web Database (https://www.nceas.
ucsb.edu/interactionweb/), the GlobalWeb food web database
(https://www.globalwebdb.com/) and the R package cheddar
[49]. The data span all continents, encompass terrestrial, marine,
estuarine and freshwater ecosystems, and average 64 species
and 427 interactions (details in electronic supplementary material,
appendix S1). Data and code can be found in Dryad [50] or at
https://github.com/JPGibert/FWs_LS feasibility_space.

Because the fraction of non-consumers, , may be over- or
underestimated in empirical data, we determined a series of
possible upper boundaries to L-S space of increasing likelihood
based on the quantiles of the empirical distribution of 3 across
all food webs. The ‘true’ upper boundary corresponds to the
maximum possible f in nature, but owing to sampling error,
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Table 1. Regression summary of a multiple linear model estimating the effects or biotic and abiotic variables on species richness in empirical food webs. Increasing  [JJEJij
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g
variable estimate (b) s.e. p-value VIF §
R*=10.882 intercept 245 0.019 <107" na. §
Rag = 0.867 species richness 0334 0.02 <107" 1.36 %
p<107 omnivory 0.181 0023 <107 2
modularity —0.131 0.023 <107¢ 1853 g
latitude 0.053 0.02 0.01 1.403 §
fraction top predators —0.081 0.022 0.001 1.703 %
habitat —0.042 0.066 0.526 1.655 =

top preds X habitat 0.129 0.053 0.018 1.75

our upper boundary estimated based on the 0.95 quantile rep-
resents our best estimate of this boundary. We also tested for
the existence of statistical boundaries in the L-S plane through
a quantile regression with L as response and S as predictor
using the R package quantreg [51]. Quantile regressions indicate
the existence of boundaries in the distribution of stochastic
variables [52].

Last, we assessed whether food webs that occur closer or
father away from these boundaries share common biotic and
abiotic features. To do so we fitted a multiple linear regression
that includes descriptors of food web structure. Biotic factors
included the prevalence of omnivory (i.e. the fraction of species
that feed on multiple trophic levels [53]), the maximum
number of trophic levels (calculated as in [54]), the fraction of
basal and top species and modularity (ie. the existence of
groups of species that more likely interact with other species
within their group [55]). Abiotic factors included ecosystem type
(aquatic or terrestrial) and absolute latitude. We used the log;o
of all numerical variables except for absolute latitude and the frac-
tion of basal species. We considered the interaction between
ecosystem type and the fraction of top predators (model selection
is presented in electronic supplementary material, appendix S2).
To control for multicollinearity, we included variance inflation fac-
tors (VIFs) for all predictors using R package car [56] (VIF>5
indicates strong collinearity). Owing to moderate collinearity,
maximum trophic level and the fraction of basal species were
dropped from the main model (see the full model in electronic
supplementary material, appendix S2).

3. Results

Values of B ranged from 0.013 to 0.73 with a mean of 0.32 +
0.03. The 5th, 25th, 50th, 75th and 95th percentiles of the dis-
tribution of B-values set boundaries to L-S space that are
lower than the boundary set by constant connectance and
above which no food web in our dataset occurs (figure 1b).
The lower boundary of this feasible space is still set by the
L=S5—1 relationship (figure 1b) and all food webs fell
within the limits of this space (figure 1b). The existence of a
feasible space was corroborated by a significant quantile
regression (figure 1c).

A model with S as the sole predictor of L accounted for
50% of observed variance within the feasible space, while a
model including other biotic and abiotic variables accounted
for 87% (adj. R?=10.867; table 1). Biotic and abiotic variables
thus account for all but 13% of the variation observed
within the feasible space. Indeed, food webs with a higher

prevalence of omnivory also were ones with more links
(b=0.181+0.023, p<107'%; figure 2a), while modular food
webs had fewer links (b =-0.131+0.023, p < 107 figure 2b).
Food webs with more top predators had fewer links in
aquatic ecosystems (b=-0.081+0.022, p=0.001; figure 2d),
but more links in terrestrial ecosystems (interaction term =
0.129 +0.053, p=0.018; figure 2¢). Among abiotic factors,
food webs closer to the upper boundary also were farther
away from the equator (b=0.053 +0.02, p =0.011; figure 2c),
while ecosystem type did not influence the number of links
(terrestrial intercept relative to aquatic =0.042 +0.066, p=
0.526; figure 2f). Multicollinearity precluded us from assessing
whether food webs closer or farther away from the upper
boundary were also similar in terms of the fraction of basal
species and the number of trophic levels (VIF(no. trophic
levels) = 4.67, VIF(basal spp.) = 4.14; electronic supplementary
material, appendix S2).

4. Discussion

Understanding how biotic and abiotic factors influence food
web structure is a prerequisite to forecasting environmentally
induced changes to food webs. Despite a century of research
since Elton’s seminal work [57], we still do not fully under-
stand what determines why some food webs have more
interactions than others of similar richness. We show theoreti-
cally (figure 1a), empirically (figure 1b) and statistically
(figure 1c), that accounting for forbidden interactions sets
an upper boundary to the feasible link-species space within
which all analysed food webs occur. We also show that
food webs that are closer or farther away from this upper
boundary share biotic and abiotic features (figure 2),
suggesting underlying rules governing how food webs are
structured in nature. These results amend our understanding
of the processes controlling food web structure and empha-
size the importance of interactions that cannot occur in
nature as a factor structuring food webs [36,39].

A recent study examined several possible L-S scaling
relationships, with a ‘flexible links” model accurately predict-
ing this scaling as well as the distribution of values in L-S
space [28]. Despite this important advance, the flexible links
model does not predict an upper limit to the feasible L-S
plane, nor does it attribute residual variation to underlying
ecological factors. We show that food webs do not occur
within feasible L-S space at random. Instead, food webs
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Figure 2. Model predictions showing effects of (a) omnivory, (b) modularity, (c) latitude, (d) fraction of top predators in aquatic ecosystems, and (e) fraction of top

predators in terrestrial ecosystems and (f) terrestrial and aquatic ecosystems.

that occupy certain portions of this space also share a combi-
nation of biotic and abiotic features like the prevalence of
omnivory or the proportion of apex predators (figure 2).
We notice, however, that our analysis falls short of assigning
causality to these variables, as cause and effect can be diffi-
cult to disentangle among structural features. Interestingly,
however, and contrary to what was observed in terrestrial
food webs, aquatic food webs showed (i) a negative corre-
lation between the proportion of apex predators and the
total number of links, and (ii) higher overall connectivity.
One possible explanation is that, despite being equally pro-
ductive, aquatic food webs tend to have high consumer
biomass relative to terrestrial food webs (i.e. inverted biomass
pyramids [58,59]), potentially leading to more omnivory and
interactions. In addition to having higher connectivity,
aquatic food webs also tended to be less modular, which
could reduce stability, thus providing a possible explanation
as to why trophic cascades are seemingly more frequent in
aquatic systems.

Our findings suggest possible ways in which food webs
might change with the climate. Rising temperatures are
expected to decrease the proportion of apex predators and
increase the proportion of basal species and primary produ-
cers [3]. Our results suggest that as the proportion of top
predators decreases, aquatic food webs may become more
interconnected while terrestrial ecosystems may become less
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